Abstract
Sealing treatment provides a strategy for the long-term performance of thermal spray coatings under actual working conditions. However, common sealants are mainly limited to improving the corrosion resistance of coatings, neglecting applications in more complex environments where they are subject to simultaneous corrosion and wear. Herein, a novel organic-inorganic hybrid composite sealant, composed of self-lubricating MoS2 nanoparticles and environmentally friendly waterborne silicone modified acrylic resin (WBS-ACR), was successfully prepared in the pores and micro-defects of plasma-sprayed HEA coatings by one-step hydrothermal method. The results indicate that MoS2 nanosheets are uniformly synthesized in resin materials through precursor hydrothermal reactions. The hybrid sealants are filled densely in the micro-defects of HEA coatings with a maximum penetration depth greater than 180 μm. The tribological and electrochemical results indicate that the hybrid sealant exhibits similar anti-wear performance, but two orders of magnitude lower corrosion currents than that of pure MoS2 sealant. In comparison to the pure resin sealant, the hybrid sealant retains its excellent corrosion resistance while increasing its wear resistance. The superior comprehensive performance of the novel organic-inorganic hybrid sealant could expand the application of thermal spray coatings into new fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.