Abstract

In this study, new multicomponent Fe54M5Cr15Mo6Si2B4P10C4 (M = Fe, Co, and Ni, denoted as Fe59, Fe54Co5, and Fe54Ni5, respectively) bulk metallic glasses (BMGs) with excellent corrosion and wear resistances were synthesized using the J-quenching technique and fluxing treatment. The synthesized Fe-based BMGs possessed a large glass-forming ability, and the maximum diameters of the Fe59, Fe54Co5, and Fe54Ni5 glassy alloy rods reached 5.5, 4.5, and 4.0 mm, respectively. The Fe59 BMG had a wide supercooled liquid region of 65 K. Potentiodynamic tests in 3.5 wt.% NaCl solution showed that the corrosion resistances of the synthesized Fe-based BMGs were relatively better than that of the 316L stainless steel. The Fe59 BMG had the highest corrosion resistance, with the lowest self-corrosion current density in the order of 10−8 A·cm−2. Wear tests showed that the synthesized Fe-based BMGs exhibited excellent wear resistances, and the wear rate of the Fe59 BMG was as low as approximately 1.73 × 10−15 m3·N−1·m−1. The rare-earth-element-free Fe-based BMGs, especially the Fe59 BMG, have a low cost, large glass-forming ability, and excellent wear and corrosion resistance, which make them good candidates for wear-and corrosion-resistant coating materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call