Abstract

As resist films become thinner, so as to reduce problems of aspect ratio related pattern collapse at high-resolution, it is becoming increasingly difficult to transfer patterns with useful aspect ratio by directly etching the resist. It has become common to use the photoresist to pattern an intermediate hardmask, which then protects the silicon substrate during etching, allowing useful aspect ratios but adding process complexity. We have previously described a fullerene based electron beam lithography resist capable of 20 nm halfpitch and 12 nm sparse features, at a sensitivity of less than 10 &mu;C/cm<sup>2</sup> at 20 keV. The fullerene resist has high etch durability - comparable to that of commercial novolac resists - and has previously demonstrated an etch selectivity of 3:1 to silicon using electron cyclotron resonance microwave plasma etching with SF<sub>6</sub>. Here a study of the capabilities of this resist when using Inductively Coupled Plasma etching is presented. Line-space patterns with half-pitches in the range 25 nm to 100 nm, together with sparse features (~20 nm linewidth on a 200 nm pitch) were produced in ~30 nm thick resist films using electron beam lithography, and transferred to silicon using an inductively coupled plasma etcher. Several combinations of SF<sub>6</sub>, CF<sub>4</sub>, CHF<sub>3</sub> and C<sub>4</sub>F<sub>8</sub>process gases were explored. Etch selectivity and anisotropy were studied as a range of etching parameters, such as ICP and RF power, gas flow rate, pressure and temperature were varied. Etch selectivities in excess of 9:1 were demonstrated. Techniques for minimizing aspect ratio dependent etching effects in dense features, including the use of ashing or high etching pressures were also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.