Abstract

A queue layout of a graph consists of a linear order of its vertices and a partition of its edges into queues, so that no two independent edges of the same queue are nested. The queue number of a graph is the minimum number of queues required by any of its queue layouts. A long-standing conjecture by Heath, Leighton and Rosenberg states that the queue number of planar graphs is bounded.This conjecture has been partially settled in the positive for several sub- families of planar graphs (most of which have bounded treewidth). In this paper, we make a further important step towards settling this conjecture. We prove that planar graphs of bounded degree (which may have unbounded treewidth) have bounded queue number. A notable implication of this result is that every planar graph of bounded degree admits a three-dimensional straight-line grid drawing in linear volume. Further implications are that every planar graph of bounded degree has bounded track number, and that every k-planar graph (i.e., every graph that can be drawn in the plane with at most k crossings per edge) of bounded degree as bounded queue number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call