Abstract

A three-dimensional (straight-line grid) drawing of a graph represents the vertices by points in Z3 and the edges by noncrossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing '01, Lecture Notes in Comput. Sci., 2002]: does every n-vertex planar graph have a three-dimensional drawing with O(n) volume? We prove that this question is almost equivalent to an existing one-dimensional graph layout problem. A queue layout consists of a linear order ? of the vertices of a graph, and a partition of the edges into queues, such that no two edges in the same queue are nested with respect to ?. The minimum number of queues in a queue layout of a graph is its queue-number. Let G be an n-vertex member of a proper minor-closed family of graphs (such as a planar graph). We prove that G has a O(1) × O(1) × O(n) drawing if and only if G has O(1) queue-number. Thus the above question is almost equivalent to an open problem of Heath, Leighton, and Rosenberg [SIAM J. Discrete Math., 1992], who ask whether every planar graph has O(1) queue-number? We also present partial solutions to an open problem of Ganley and Heath [Discrete Appl. Math., 2001], who ask whether graphs of bounded tree-width have bounded queue-number? We prove that graphs with bounded path-width, or both bounded tree-width and bounded maximum degree, have bounded queue-number. As a corollary we obtain three-dimensional drawings with optimal O(n) volume, for series-parallel graphs, and graphs with both bounded tree-width and bounded maximum degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.