Abstract
Planar functions were introduced by Dembowski and Ostrom [4] to describe projective planes possessing a collineation group with particular properties. Several classes of planar functions over a finite field are described, including a class whose associated affine planes are not translation planes or dual translation planes. This resolves in the negative a question posed in [4]. These planar functions define at least one such affine plane of order 3 ^e for every e ≥ 4 and their projective closures are of Lenz-Barlotti type II. All previously known planes of type II are obtained by derivation or lifting. At least when e is odd, the planes described here cannot be obtained in this manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.