Abstract
SynopsisWe construct firstly a single tactical configuration which has the structure of the dual of the affine plane of order 4, and show how to obtain a further set of 3 such dual planes which, together with , satisfy a certain set of intersection properties. This set of 4 dual planes is used to extend the 20 points of to the Steiner system = S(5, 8, 24). The construction leads to the production of involutions of the type which fix the points of an octad. It is shown that 3 involutions each of this type suffice to generate M24, each of the simple Mathieu groups inside M24, the Todd group, and all the intransitive maximal subgroups of M24.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.