Abstract
In this paper we describe several elementary constructions of 4-, 8- and 16-dimensional locally compact affine planes. The new planes share many properties with the classical ones and are very easy to handle. Among the new planes we find translation planes, planes that are constructed by gluing together two halves of different translation planes, 4-dimensional shift planes, etc. We discuss various applications of our constructions, e.g. the construction of 8- and 16-dimensional affine planes with a point-transitive collineation group which are neither translation planes nor dual translation planes, the proof that a 2-dimensional affine plane that can be coordinatized by a linear ternary field with continuous ternary operation can be embedded in 4-, 8- and 16-dimensional planes, the construction of 4-dimensional non-classical planes that admit at the same time orthogonal and non-orthogonal polarities. We also consider which of our planes have ‘tangent translation planes’ in all their points. In a final section we generalize the Knarr-Weigand criterion for topological ternary fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.