Abstract

Accurate placenta super micro-vessels segmentation is the key to diagnose placental diseases. However, the current automatic segmentation algorithm has issues of information redundancy and low information utilization, which reduces the segmentation accuracy. To solve this problem, we propose a model based on ResNeXt with convolutional block attention module (CBAM) and UNet (RC-UNet) for placental super micro-vessels segmentation. In the RC-UNet model, we choose the UNet as the backbone network for initial feature extraction. At the same time, we select ResNeXt-CBAM as the attention module for feature refinement and weighting. Specifically, we stack the blocks of the same topology following the split-transform-merge strategy to reduce the redundancy of hyperparameter. Moreover, we conduct CBAM processing on each group of the detailed features to get informative features and suppress unnecessary features, which improve the information utilization. The experiments on the self-collected data show that the proposed algorithm has better segmentation results for anatomical structures (umbilical cord blood (UC), stem villus (ST), maternal blood (MA)) than other selected algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.