Abstract

Abstract. High-resolution Digital Terrain Models (DTMs) of the lunar surface can provide crucial spatial information for lunar exploration missions. In this paper, we propose a method to generate high-quality DTMs based on a synthesis of deep learning and Shape from Shading (SFS) with a Lunar Reconnaissance Orbiter Narrow Angle Camera (LROC NAC) image as well as a coarse-resolution DTM as input. Specifically, we use a Convolutional Neural Network (CNN)-based deep learning architecture to predict initial pixel-resolution DTMs. Then, we use SFS to improve the details of DTMs. The CNN-model is trained based on the dataset with 30, 000 samples, which are formed by stereo-photogrammetry derived DTMs and orthoimages using LROC NAC images as well as the Selenological and Engineering Explorer and LRO Elevation Model (SLDEM). We take Chang’E-3 landing site as an example, and use a 1.6 m resolution LROC NAC image and 5 m resolution stereo-photogrammetry derived DTM as input to test the proposed method. We evaluate our DTMs with those from stereo-photogrammetry and deep learning. The result shows the proposed method can generate 1.6 m resolution high-quality DTMs, which can clearly improve the visibility of details of the initial DTM generated from the deep learning method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call