Abstract
A novel portable energy harvester using 3-3 mode piezoelectric stack with two-stage force amplification is proposed. It can obtain 21 times force amplification with 18% energy transmission ratio and generate electrical energy up to 79 times more than one piezoelectric ceramic of lead zirconate titanate (PZT) stack. Dynamic experiments demonstrate that the harvester with one-and two-stage force amplification can generate the maximum electrical power of 74.9 mW/g2 from one PZT stack at resonance frequency 235 Hz with matching resistance of 268 Ohms and 2642 mW/g2 from three PZT stacks at resonance frequency 37 Hz with match resistance of 1722 Ohm under 100 g proof mass and 0.1 g acceleration. Theoretical electromechanical modeling is established to reveal the working mechanism of force amplification and to predict electricity generation. Comparison of the predicted electricity with experimental results verified effectiveness of electromechanical modeling and optimization design methodology with consideration of tradeoff among force magnification ratio, energy transmission efficiency, and maximum stress. This piezoelectric energy harvester using two-stage force amplification can not only significantly improve power generation but also reduce the resonance frequency Moreover, the resonance frequency can also be adjusted by adjusting the mass load, by which a two-stage energy harvester can be applied to meet requirements of various bandwidths in low-frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.