Abstract

Thin films of epitaxial SrTiO3 grown on silicon exhibit compressive in-plane strain that may stabilize ferroelectricity in this normally non-ferroelectric material. We investigate this possibility by using an ultra-high vacuum atomic force microscope to measure the local force response of coherently strained SrTiO3 films on silicon to an applied ac electric field. The observed cantilever response is different in regions that were previously written with positive and negative voltages, but the frequency dependence of this response indicates that the dominant forces are related to electrostatic charging rather than ferroelectricity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.