Abstract

Halide perovskites are an emerging family of piezoelectric and ferroelectric materials. These materials can exist in bulk, single-crystal, and thin-film forms. In this article, we review the piezoelectric charge coefficient (dij) of single crystals, thin films, and dimension-tuned halide perovskites based on different measurement methods. Our study finds that the (dij) coefficient of the bulk and single-crystal samples is mainly measured using the quasi-static (Berlincourt) method, though the piezoforce microscopy (PFM) method is also heavily used. In the case of thin-film samples, the (dij) coefficient is dominantly measured by the PFM technique. The reported values of dij coefficients of halide perovskites are comparable and even better in some cases compared to existing materials such as PZT and PVDF. Finally, we discuss the promising emergence of quasi-static methods for thin-film samples as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.