Abstract

Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through them, are required for modulating the K2P channel K2P2.1 (TREK1). Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting that the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call