Abstract

Potassium channels are tetrameric proteins that mediate K(+)-selective transmembrane diffusion. For KcsA, tetramer stability depends on interactions between permeant ions and the channel pore. We have examined the role of pore blockers on the tetramer stability of KirBac1.1. In 150 mm KCl, purified KirBac1.1 protein migrates as a monomer (approximately 40 kDa) on SDS-PAGE. Addition of Ba(2+) (K(1/2) approximately 50 microm) prior to loading results in an additional tetramer band (approximately 160 kDa). Mutation A109C, at a residue located near the expected Ba(2+)-binding site, decreased tetramer stabilization by Ba(2+) (K(1/2) approximately 300 microm), whereas I131C, located nearby, stabilized tetramers in the absence of Ba(2+). Neither mutation affected Ba(2+) block of channel activity (using (86)Rb(+) flux assay). In contrast to Ba(2+), Mg(2+) had no effect on tetramer stability (even though Mg(2+) was a potent blocker). Many studies have shown Cd(2+) block of K(+) channels as a result of cysteine substitution of cavity-lining M2 (S6) residues, with the implicit interpretation that coordination of a single ion by cysteine side chains along the central axis effectively blocks the pore. We examined blocking and tetramer-stabilizing effects of Cd(2+) on KirBac1.1 with cysteine substitutions in M2. Cd(2+) block potency followed an alpha-helical pattern consistent with the crystal structure. Significantly, Cd(2+) strongly stabilized tetramers of I138C, located in the center of the inner cavity. This stabilization was additive with the effect of Ba(2+), consistent with both ions simultaneously occupying the channel: Ba(2+) at the selectivity filter entrance and Cd(2+) coordinated by I138C side chains in the inner cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.