Abstract
The application of computer simulations to scientific and engineering problems has evolved to an established phase over the last decades. In the field of semiconductor device physics, Technology CAD (TCAD) has been regarded as an indispensable tool for the interpretation and prediction of device behavior. More specifically, TCAD modeling and simulation of nanostructured III-nitride light emitters still have challenging problems and is currently a topic under active research. This thesis devotes to the theoretical and numerical investigations of III-nitride bulk and quantum structures, following a bottom-up approach aimed at modeling and understanding photoluminescence and electroluminescence in these structures. In the first part, the calculation of electronic bandstructure is addressed, where a novel k · p model derived from Non-local Empirical Pseudopotential method(NL-EPM) is presented. Optical properties are then calculated employing both Poisson-k · p and a density-matrix based approach, gain and luminescence spectra can be extracted by solving the semiconductor-Bloch equation numerically. The last part of this thesis deals with the microscopic quantum transport, within the framework of the quantum-statistical nonequilibrium Greens function formalism(NEGF). While classical drift-diffusion models assume that bound carriers hold their coherence in the confined direction and unbound carriers are completely incoherent, NEGF does not distinguish between bound and unbound states and treats them on equal footing. In addition, NEGF also provides intuitive insights into energy-resolved carrier distributions, currents and coherence loss mechanisms. The numerical computations alongside this thesis can be computationally very involved, some code developed along with this thesis is deployed on the clusters and able to scale up to more than 1000 CPU cores, thanks to the parallel implementation technique such as OpenMP and MPI, as well as HPC infrastructures available at CINECA computing center
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.