Abstract

Historically, infrared (IR) detector technologies are connected mainly with controlling and night-vision problems: in a first stage, applications concerned simply with detection of IR radiation, but very soon capabilities to form IR images were developed, opening the way to systems for recognition and surveillance, especially for military purposes. Since the last decade of the twentieth century, the use of IR imaging systems for civil and peaceful purposes have increased continuously: these include medical and industrial applications, detection of earth resources, earth and universe sciences, etc. As an example, IR imaging is widely used in astronomy, to study interstellar medium and first-stages of stellar evolution; in medicine, IR thermography - IR imaging of the human body - is employed to detect cancers or other trauma; IR detectors are also widely used in automotive industry, chemical process monitoring, global monitoring of environmental pollution and climate changes, etc. The discovery in 1959 by Lawson and co-workers of the wide tunability of the HgCdTe alloy allowed this compound to become one of the most important and versatile materials for detector applications over the entire IR range. A critical contribution to research is given by Technology Computer-Aided Design (TCAD), modeling and simulation. In the first part of this thesis, I present the main part of my research activity, focused on the development of abilities and methodologies for the simulation of realistic three-dimensional HgCdTe-based infrared photodetectors. The purpose is the investigation of generation-recombination (GR) mechanisms and modeling of spectral photoresponse in narrow-gap HgCdTe-based photodetectors, with one-, two and three-dimensional (1D, 2D, 3D) realistic TCAD models (Chapters 1-5). Another important topic of industrial research in semiconductor physics deals with nitride-based light-emitting diodes (LEDs). From automotive to streetlights, from lights in our houses to the displays of TVs and smartphones, LED-based technology is making its way in the market. This proliferation would have been impossible without GaN-based LEDs, whose invention by Isamu Akasaki, Hiroshi Amano and Shuji Nakamura has been rewarded with the 2014 Nobel Prize in Physics. Nevertheless, GaN-based LEDs performanceis limited by a reduction (droop) of their internal quantum efficiency (IQE) as the driving current density is increased beyond 10 A/cm2, whose physical origin is still under intense debate. In the second part of this thesis, I present a quantum model, based on condensed matter many-body theory, that allowed to obtain the electron capture time and hot-electron intraband relaxation times in a quantum well (QW)-barrier heterostructure, for longitudinal optic (LO) phonon emission, as function of carrier density. The interaction was described in the Single Plasmon Pole of the Random Phase Approximation, retaining the full density-, energy- and wavevector-dependent form of the dielectric function (Chapters 6-7)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.