Abstract
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable. Herein, we developed a natural physicochemically cross-linked adhesive injectable skin substitute (SS) comprising chitosan (Ch) and silk fibroin (SF), cross-linked with tannic acid (TA) through hydrogen bonding, and incorporated with fresh platelet-rich fibrin (FPRF). SF was also chimerically cross-linked with riboflavin (RF) under visible light to ensure desirable biodegradability rate and nontoxicity. Double cross-linked SS exhibited a semibilayer (SBSS) structure with smaller pores in the upper layer. In the CaCl2-treated FPRF, the activated platelets augmented vascular endothelial growth factor (VEGF) and platelet-derived GF (PDGF) release. The resultant SBSS possessed optimal adhesion, hemocompatibility, and significant antibacterial and antioxidant activities (P ≤ 0.05). The rat liver injury model confirmed the rapid hemostatic effect of SBSS. Furthermore, the bottom layer of SBSS promoted L929 fibroblast growth, proliferation, and migration. SBSS-treated wounds showed lower inflammatory cells, earlier epithelialization, significant angiogenesis, and faster healing. The proposed SBSS could be an ideal remedy for burn wound therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have