Abstract

The protein components of three industrial recombinant expression systems: Escherichia coli, Saccharomyces cerevisiae, and a mammalian cell culture supernatant of CHO cells were characterized in terms of their molecular weight, isoelectric point, and relative surface hydrophobicity. Identification of individual proteins was done by reference to their position in protein band profiles by polyacrylamide gel electrophoresis (PAGE) of the crude material. This permitted a rapid and facile assignment of quantitative values for these three parameters to all the major protein components in these materials. Because it is the indigenous proteins in expression systems that will form the bulk of any impurities in the product, once the values of these parameters are known for any target recombinant protein, the data obtained will enable appropriate expression systems to be chosen for minimizing amounts of potential contaminants and reducing downstream processing requirements and costs. The data will also indicate which fractionation steps (i.e., charge, size or hydrophobicity-based) are likely to be best for distinguishing between target and contaminant proteins, thus aiding and early removal of the maximum quantities of undesired protein to bring subsequent bioseparation steps down in scale and cost and up in terms of efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.