Abstract
Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have