Abstract

Antibodies directed against the influenza hemagglutinin (HA) protein largely mediate virus neutralization and confer protection against infection. Consequently, many studies and assays of influenza vaccines are focused on HA-specific immune responses. Recombinant HA (rHA) proteins can be produced in a number of protein expression and cell culture systems. These range from baculovirus infection of insect cell cultures, to transient transfection of plants, to stably transfected human cell lines. Furthermore, the rHA proteins may contain genetic modifications, such as histidine tags or trimerization domains, intended to ease purification or enhance protein stability. However, no systematic study of these different forms of the HA protein have been conducted. It is not clear which, if any, of these different protein expression systems or structural modifications improve or diminish the biological behavior of the proteins as immunogens or antigens in immune assays. Therefore we set out to perform systematic evaluation of rHA produced in different proteins expression systems and with varied modifications. Five rHA proteins based on recent strains of seasonal influenza A and five based on influenza B HA were kindly provided by the Biodefense and Emerging Infections Reagent Repository (BEIR). These proteins were evaluated in a combination of biochemical and structural assays, in vitro humoral and cellular immune assays, and in an animal vaccination model. Marked differences in the behavior of the individual proteins was evident suggesting that they are not equal when being used to detect an immune response. They were, nevertheless, similar at eliciting neutralizing antibody responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.