Abstract

Refractories bricks’ excellent thermomechanical and chemical resistant features makes it invaluable materials in modular incinerator ˃ 1000 °C applications. In this research, suitable physicochemical and performance evaluation were employed using X-Ray Fluorescence (XRF), dimensional property assessment, linear shrinkage and water absorption analysis. The samples were sourced from Auchi (ARB1), Afowa (ARB2), Ayogwiri (ARB3), Aviele (ARB4) and Agbede (ARB5) clay minerals deposit in Edo North, Edo State, Nigeria. Then green compact samples were fired into dense phase. The result from the XRF study revealed a generally established composition of ARB1 clay mineral of SiO2: 44.34%, Al2O3: 36.36% and others. ARB2 clay mineral of SiO2: 41.78%, Al2O3: 39.62% and others. ARB3 clay mineral of SiO2: 45.04%, Al2O3: 34.01% and others. ARB4 clay mineral of SiO2: 40.12%, Al2O3: 38.96% and others. ARB5 clay mineral of SiO2: 47.03%, Al2O3: 34.52% and others. The elemental composition of ARB1-5 revealed a similar trend of alumina and silica content to high-Al2O3 bricks (SiO2: 45.0 – 56.0%, Al2O3: 39.0 – 48.0% and others) and commercial clay bricks (SiO2: 48.0%, Al2O3: 36.96% and others) respectively. An average lower percentage error ERL, ERW, and ERH of ARB1 samples 0.148, 0.248 and 0.28% were recorded respectively. The average linear shrinkage and water absorption analysis of 9.91 and 4.71% demonstrated a potential for high elasticity of modulus. The overall data from this research shows that ARB1-5 bricks can find use in incinerator and high temperature applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call