Abstract

To simulate and examine temperature and self-heating effects in Silicon-On-Insulator (SOI) devices and circuits, a physical temperature-dependence model is implemented into the SOISPICE fully depleted (FD) and nonfully depleted (NFD) SOI MOSFET models. Due to the physical nature of the device models, the temperature-dependence modeling, which enables a device self-heating option as well, is straightforward and requires no new parameters. The modeling is verified by DC and transient measurements of scaled test devices, and in the process physical insight on floating-body effects in temperature is attained. The utility of the modeling is exemplified with a study of the temperature and self-heating effects in an SOI CMOS NAND ring oscillator. SOISPICE transient simulations of the circuit, with floating and tied bodies, reveal how speed and power depend on ambient temperature, and they predict no significant dynamic self-heating, irrespective of the ambient temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.