Abstract
A new model for the non-fully depleted (NFD) SOI MOSFET is developed and used to study floating-body effects in SOI CMOS circuits. The charge-based model is physical, yet compact and thus suitable for device/circuit simulation. Verified by numerical device simulations and test-device measurements, and implemented in (SOI)SPICE, it reliably predicts floating-body effects resulting from free-carrier charging in the NFD/SOI MOSFET, including the purportedly beneficial supra-ideal sub-threshold slope due to impact ionization and a saturation current enhancement due to thermal generation. SOISPICE CMOS circuit simulations reveal that the former effect is not beneficial and could be detrimental, but the latter effect can be beneficial, especially in low-voltage applications, when accompanied by a dynamic floating-body effect that effectively reduces static power. The dynamic floating-body effects are hysteretic, however, and hence exploitation of the beneficial ones will necessitate device/circuit design scrutiny aided by physical models such as the one presented herein.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.