Abstract

It is essential to understand the physical and mechanical properties of a product since these properties affect the structure, texture, and ultimately consumer acceptance. The effect of drying conditions on dynamic viscoelastic properties, stress relaxation function and creep compliance, and physical properties, such as moisture distribution, color parameters, and shrinkage, was studied. An increase in drying temperature and duration resulted in a decrease in moisture content and volume, which were highly correlated (R = .988). Water evaporation followed the falling rate period, demonstrating that the water transport was limited by internal resistances. The decomposition of carotenoids led to a decrease in magnitude of color parameters (L, a, and b), between 30.1% and 51.6% with 4 hr drying. It was observed that the material shrinkage and moisture content highly affected the mechanical properties; increased stress relaxation modulus and decreased creep compliance values of the sample. The creep behavior, expressed with Burger's model (R2 ≥ .986), was highly dependent on moisture content. The linear viscoelastic region of carrots was found to be at strains lower than 3%. The three-element Maxwell model well fitted to describe the viscoelastic behavior of carrots (R2 ≥ .999, RMSE ≤ 2.08 × 10-4 ). The storage moduli (G') were higher than loss moduli (G″), indicating that samples presented solid-like behavior. The findings can be used to improve the textural attributes of carrots and carrot-based products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.