Abstract

The physical and chemical behaviour of bulk tungsten oxide (WO3) and Ni doped tungsten oxide (15% Ni/WO3) were examined by performing a temperature-programmed reduction (TPR) technique. The chemical composition, morphology, and surface composition of both samples before and after reduced were analysed by X-ray diffraction (XRD), scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analysis. The XRD pattern of calcined Ni doped tungsten oxide powder comprised of WO3 and nickel tungstate (NiWO4) phases. The reduction behaviour was investigated by a non-isothermal reduction up to 900 °C achieved under (10 and 20% v/v) hydrogen in nitrogen (H2 in N2) and (20 and 40% v/v) carbon monoxide in nitrogen (CO in N2) atmospheres. The H2-TPR were indicated the reduction of bulk WO3 and 15% NiWO3 proceed in three steps (WO3 → WO2 → WO2 + W) and (WO3 → WO2 → W + Ni4W) respectively under 20% H2. Whereas, the reduction of 15% WO3 under 40% CO involves of two following stages: (i) low temperature (<800 °C) transformation of WO3 → WO2.72 → WO2 and, (ii) high temperature (>800 °C) transformation of WO2 → W → WC. Furthermore, NiWO4 alloy phase was transformed according to the sequence NiWO4 → Ni + WO2.72 → Ni + WO2 → Ni + W → Ni4W + W at temperature >700 °C and >800 °C in H2 and CO atmospheres, respectively. It can be concluded that the reduction behaviour of WO3 is matched with the thermodynamic data. In addition, the reduction under H2 is more favourable and have better reducibility compared to the CO gas. It is due to the small molecule size and molecule mass of H2 that encourages the diffusion of H2 molecule into the internal surface of the catalyst compared to CO. Moreover, Ni additive had improved the WO3 reducibility and enhancing the CO adsorption and promotes the formation of tungsten carbide (WC) by carburisation reaction. Besides, the formation of Ni during the reduction of 15% Ni/WO3 under CO reductant catalysed the Boudouard reaction to occur, which disproportionated the carbon monoxide to carbon dioxide and carbon (CO → CO2 + C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.