Abstract

The reduction behavior of molybdenum trioxide (MoO3) by carbon monoxide (CO) has been studied using temperature programmed reduction (TPR) and was characterized using X-ray diffraction spectroscopy (XRD). The TPR result shows that the first reduction peak of MoO3 under 20 vol. % CO in nitrogen started at 530 °C and second reduction peaks observed was at 700 °C. The XRD technique was employed to identify the changes in the sample. It was found that after non-isothermal reduction up to 700 °C, the intermediate phases Mo4O11 were observed. Completed reduction to MoO2 achieved after continued reduction with isothermal mode at 700 °C for 60 minutes. Based on the XRD analysis, it is confirmed that the reduction of MoO3 to MoO2 in CO atmosphere consists of two reduction stages, i) Mo6+ → Mo5+ and ii) Mo5+ → Mo4+. While, CO excess have resulted the formation of molybdenum carbide (Mo2C) rather than formation of metallic molybdenum (Mo).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.