Abstract

The C-F bond is the strongest covalent single bond (126 kcal/mol) in carbon-centered bonds, in which the highest electronegativity of fluorine (χ = 4) gives rise to the shortest bond length (1.38 Å) and the smallest van der Waals radius (rw = 1.47 Å), resulting in enormous challenges for activation and transformation. Herein, C-F conversion was realized via photouranium-catalyzed hydroxylation of unactivated aryl fluorides using water as a hydroxyl source to deliver multifunctional phenols under ambient conditions. The activation featured cascade sequences of single electron transfer (SET)/hydrogen atom transfer (HAT)/oxygen atom transfer (OAT), highly integrated from the excited uranyl cation. The *UO22+ prompted water splitting under mild photoexcitation, caging the active oxygen in a peroxo-bridged manner for the critical OAT process and releasing hydrogen via the HAT process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.