Abstract

Plastics are playing an incrementally extensive and irreplaceable role in human life, but with alarming cyclic unsustainability. Numerous attempts have been undertaken to recycle plastics, among which chemical recycling from waste plastics back to chemicals and monomers has attracted great attention. Herein, the depolymerization of nine types of plastics to commercial chemicals and monomers was achieved under ambient conditions via synergetic integrated uranyl-photocatalysis, which contains a process for converting five kinds of mixed plastics into a value-added product. The degradation processes were depicted in terms of variation in scanning electron microscopy imaging, distinction in the X-ray diffraction pattern, alteration in water contact angle, and dynamic in molecular weight distribution. Single electron transfer, hydrogen atom transfer, and oxygen atom transfer were synergistically involved in uranyl-photocatalysis, which were substantiated by mechanistic studies. Relying on flow system design, the chemical recycling of plastics was feasible for kilogram-scale degradation of post-consumer-waste polyethylene terephthalate bottles to commercial chemicals, displaying a promising practical application potential in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.