Abstract

Aerucyclamide A (ACA) is an emerging cyanopeptide toxin produced by cyanobacteria, and its transformation pathway has rarely been reported. In the present study, ACA was purified from cyanobacterial extracts, and photodegradation processes were investigated in dissolved organic matter (DOM) solutions. Under simulated solar irradiation, the photodegradation of ACA was dominated by •OH oxidation, accounting for ~72% of the indirect photodegradation. The bimolecular reaction rate constant of ACA with •OH was (6.4 ± 0.2) × 109M − 1s − 1. Our results indicated that the major reactive sites of ACA toward •OH are thiazoline and thiazole moieties. Product analysis via high-resolution mass spectrometry suggested that hydrogen abstraction and gradual hydroxylation are the main photodegradation pathways. The acute toxicity assessment indicate that the products generated in photolysis process did not show any measurable toxicity to Thamnocephalus platyurus. Photodegradation experiments with various DOM-phycocyanin mixtures demonstrated that the half-life of ACA is much longer than that of microcystin-LR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call