Abstract

Pharmaceutical and personal care products (PPCPs) are a group of emerging contaminants that have frequently been detected in aqueous environments. Phototransformation driven by solar irradiation is one of the most important natural processes for the elimination of PPCPs. In this study, primidone (PMD) was chosen as a model “photorefractory” compound. A series of experiments were conducted to assess if reactive intermediates (RIs), such as hydroxyl radical (HO), singlet oxygen (1O2), and triplet states of dissolved organic matter (3DOM⁎), inhibited or enhanced the photochemical transformation of PMD under simulated solar irradiation. The results indicate that HO plays a key role in the photodegradation of PMD and that dissolved oxygen can affect the degradation rate of PMD by promoting HO formation. Our results demonstrated that PMD can not only react with free HO (HO-free) but also react with lower-energy hydroxylation agents (HO-like). The contributions of HO-free and HO-like to PMD degradation in various dissolved organic matter (DOM) solutions were estimated by a methane-quenching experiment. The results indicated that the HO-like species were important in the photodegradation of “photorefractory” compounds. The bimolecular reaction rate constant of the reaction of free HO with PMD was measured as (5.21 ± 0.02) × 109 M−1 s−1 by using electron pulse radiolysis. Furthermore, PMD was used as a probe to estimate the steady-state concentration of HO-free in various DOM solutions. Using the multivariate statistical strategies of orthogonal projection to latent structures discriminant analysis (OPLS-DA) and hierarchical clustering, 28 photochemical transformation products (TPs) of PMD were successfully identified from the DOM matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.