Abstract

In the exploration of the hydrothermal system of the Guaymas Basin (GB) between 27° 00′ 35′′ and 27° 00′ 50′′ N and 111° 24′ 15′′ and 111° 24′ 40′′ W in the Gulf of California, carried out on the R/V Atlantis and of the DSRV/Alvin in October 2008, four cores of surface sediments were obtained to analyse photosynthetic pigments at two locations with contrasting extreme conditions: Oil Town and Great Pagoda. We identified nine pigments: Chlorophyll-a, Phaeophytin-a, Phaeophorbide-a, Pyropheophytin-a (degradation Chlorophyll-a products), β-Carotene, Alloxanthin, Zeaxanthin, Diadinoxanthin, and Prasinoxanthin (carotenoids). The maximum pigment concentration was registered in the Great Pagoda (10,309 ng/g) and the minimum in Oil Town (918 ng/g). It is demonstrated that photosynthetic pigment profiles in surface sediments depend on the heterogeneity of the extreme conditions of each site caused mainly by temperature and bacterial substrates. Therefore, there were significant differences (p <0.05) in the pigmentary profile of the four sedimentary cores analyzed. However, no statistical differences (p > 0.05) in the concentration of pigments have been detected. We conclude that the photosynthetic pigments contained in the surface sediments of the hydrothermal vents in the Guaymas Basin are primarily of chemoautotrophic bacterial origin.

Highlights

  • An unusually high heat flow zone characterizes the Gulf of California due to convection currents in the magmatic chamber rising below this region through the Eastern Pacific Rift (EPR) [1]

  • Six of these photosynthetic pigments corresponded to Chlorophyll-a, β-Carotene, Zeaxanthin, Alloxanthin, Diadinoxanthin, and Prasinoxanthin

  • Free-living organisms are essential in hydrothermal systems for the production of pigments

Read more

Summary

Introduction

An unusually high heat flow zone characterizes the Gulf of California due to convection currents in the magmatic chamber rising below this region through the Eastern Pacific Rift (EPR) [1]. Our study intends to elucidate if the composition and concentration of study’s focus is on the class of photosynthetic pigments (tetrapyrrole and tetraterpenoid) contained in and their concentration in surface sediments from two active hydrothermal sites in GB suffered alteration due to the exhibiting contrasting extreme conditions prevailing at each site. We postulate that such conditions may alter the diagenesis of chlorophyll derivatives as potential organic sources for heterotrophs in the studied vent system

Materials and Methods
Great Pagoda
Results
Discussions
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call