Abstract

The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.

Highlights

  • Semiconductor quantum dots (QDs)[12,13]

  • This spin-cavity transistor is genuinely a quantum transistor in three aspects: (1) it is based on a quantum effect, i.e., the linear giant optical Faraday rotation (GFR); (2) it has the duality as a quantum gate for QIP and a classical transistor for OIP; (3) it can work in the quantum limit as a SPT to amplify a single-photon state to Schrödinger cat state

  • The nonlinear GFR is sensitive to the power of incoming light occurs when the QD

Read more

Summary

Introduction

Semiconductor quantum dots (QDs)[12,13]. PT can seldom work in the quantum limit as SPT with the gain greater than 1 because of two big challenges, i.e., the difficulty to achieve the optical nonlinearities at single-photon levels and the distortion of single-photon pulse shape and inevitable noise produced by these nonlinearities[26]. A different PT and SPT scheme exploiting photon-spin interactions rather than photon-photon interactions is proposed based on a linear quantum-optical effect - giant optical Faraday rotation (GFR) induced by a single QD-confined spin in a single-sided optical microcavity[34]. This spin-cavity transistor is genuinely a quantum transistor in three aspects: (1) it is based on a quantum effect, i.e., the linear GFR; (2) it has the duality as a quantum gate for QIP and a classical transistor for OIP; (3) it can work in the quantum limit as a SPT to amplify a single-photon state to Schrödinger cat state. Based on this versatile spin-cavity transistor, optical Internet[1], quantum computers (QCs)[37,38] (either spin-cavity hybrid QCs or all-optical QCs), and quantum Internet[4] could become reality even with current semiconductor technology

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call