Abstract
We experimentally explore the practicality of integrated multiwavelength laser arrays (MLAs) for photonic convolutional neural network (PCNN). MLAs represent excellent performance for PCNN, except for imperfect wavelength spacings due to fabrication variation. Therefore, the performance of PCNN with non-ideal wavelength spacing is investigated experimentally and numerically for the first time. The results show that there exists a certain tolerance for wavelength deviation on the degradation of the structural information of the extracted feature map, leading to the robustness of photonic recognition accuracy under non-ideal wavelength spacing. The results suggest that scalable MLAs could serve as an alternative source for the PCNN, to support low-cost optical computing scenarios. For a benchmark classification task of MNIST handwritten digits, the photonic prediction accuracy of 91.2% for stride 1 × 1 scheme using the testing dataset are experimentally obtained at speeds on the order of tera operations per second, compared to 94.14% on computer. The robust performance, flexible spectral control, low cost, large bandwidth and parallel processing capability of the PCNN driven by scalable MLAs may broaden the application possibilities of photonic neural networks in next generation data computing applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have