Abstract

We report the design and experimental demonstration of a gyrotron oscillator using a photonic-band-gap (PBG) structure to eliminate mode competition in a highly overmoded resonator. The PBG cavity supports a TE(041)-like mode at 140 GHz and is designed to have no competing modes over a minimum frequency range delta omega/omega of 30% about the design mode. Experimental operation of a PBG gyrotron at 68 kV and 5 A produced 25 kW of peak power in the design mode. No other modes were observed over the full predicted operating range about the design mode. PBG cavities show great promise for applications in vacuum electron devices in the millimeter- and submillimeter-wave bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.