Abstract

PurposePhoton-counting detector (PCD)-CT is expected to have a substantial impact on oncologic abdominal imaging. We compared subjective and objective image quality between PCD-CT and conventional energy-integrating detector (EID-)CT arterial phase abdominal scans. MethodsThis study included 84 patients undergoing both types of abdominal CT. EID-CT scans were acquired with a tube voltage of 100 kVp. With PCD-CT, acquired with 120-kVp, we reconstructed polychromatic T3D images and virtual monoenergetic images (VMIs) in 10-keV intervals from 40 to 90 keV. Quantitative image analysis included noise and contrast-to-noise ratio (CNR) of hepatic vessels, kidney cortex, and hypervascular liver lesions to liver parenchyma. Three raters used a 5-point Likert scale for qualitative image analysis of image noise and contrast, lesion conspicuity, and overall image quality. Radiation dose exposure (CT dose index) was compared between the two CT types. ResultsMean CT dose index and effective dose were respectively 18 % and 26 % lower with PCD-CT versus EID-CT. Compared with EID-CT, CNRs of kidney cortex and vessel to liver parenchyma were significantly higher in PCD-CT VMIs at energies ≤ 60 keV and in polychromatic T3D images (p < 0.004). Overall image quality of PCD-CT VMIs at 50 and 60 keV was rated as significantly better (p < 0.01) than the EID-CT images (inter-reader agreement alpha = 0.80). Lesion conspicuity was significantly better in low-keV VMIs (p < 0.03) and worse in > 70-keV VMIs. ConclusionsWith low-keV VMI, PCD-CT yields significantly improved objective and subjective quality of arterial phase oncological imaging compared with EID-CT. This advantage may translate into higher diagnostic confidence and lower radiation dose protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call