Abstract
Chloral hydrate (CH) is a common disinfection by-product found in treated water, and its effective control is important to human health. This study evaluated the effects of some environmental factors (e.g., pH, CH dosage, typical ions) and operational variables (e.g., lamp power, irradiation time) on CH photolysis efficiency via low-pressure mercury lamp–induced ultraviolet (LPUV) at 254 nm. The results demonstrated that the photolysis rate increased significantly with increasing pH from 7.0 to 10.5 and lamp power from 6 to 12 W. Meanwhile, the presence of nitrate, iodide, or free chlorine facilitated CH photolysis, whereas the existence of natural organic matter hindered the process. Together, these factors may help explain varying CH photolysis in different types of waters: seawater > ultrapure water > tap water > lake water. In addition, the initial CH dosage also played an important role, with higher CH being degraded more slowly. Mechanistically, although no catalyst or oxidant was added, CH photolysis was to some extent inhibited by a hydroxyl radical quencher, tert-butyl alcohol, suggesting that indirect photolysis was also responsible for CH loss. In terms of reaction products, the CH photolysis yielded primarily chloride ions and carbon dioxide, thus supporting mineralization as the key pathway. The results may help better understand the control of CH in water using UV.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have