Abstract

Light patternable colorless liquid crystalline (LC) polymers are promising materials for functional photonic devices with broad applications in optical communication, diffractive optics, and displays. This work reports photoinduced optical anisotropy in thin films of azobenzene-containing (Azo) LC block copolymer supramolecular complexes, which can be decolorized after light patterning providing colorless patterned birefringent polymer films. The supramolecular complexes are prepared via intermolecular pyridine-phenol hydrogen bonding between a low-molecular-weight Azo phenol and host LC AB diblock and ABA triblock copolymers consisted of LC phenylbenzoate (PhM) blocks and poly(vinylpyridine) units. The molecular architecture of the host polymers and the morphological pattern formed by the complexes can affect orientational behavior of Azo groups under irradiation with linearly polarized light. Photoorientation of hydrogen-bonded Azo groups is accompanied by the cooperative orientation of non-photochromic PhM units, which form individual microphases and stabilize the orientation of Azo groups. This effect is specific for block copolymer complexes and it is absent for random copolymer complex, which is used as a reference sample. Optical anisotropy induced in films of the block copolymer complexes can be amplified by heating above the glass transition temperature and subsequent rinsing with diethyl ether allows colorless birefringent polymer films to be prepared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.