Abstract

Optical anisotropy of thin films of an organo-soluble flexible polyimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2-dimethyl-4,4′-methylene dianiline (DMMDA) was detected by a prism-coupler technique. A mechanism is proposed, based on the model of gel film collapse. The degrees of optical anisotropy of the thin films were evaluated via the level of negative birefringence. The residual solvent in the films lessens the levels of negative birefringence so that the residual solvent must be evacuated. The levels of negative birefringence are independent on the solid content of the initial solution, but dependent on the thickness of the films. For a film of 16 μm thick, zero birefringence was achieved, postulated from the dependence of negative birefringence on the thickness of thin films. The relationship between the optical anisotropy and solution properties shows that the degrees of optical anisotropy of thin films on the same scale of thickness depend on macromolecular sizes in their dilute solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call