Abstract
TiO2 thin films are often used as protective layers on semiconductors for applications in photovoltaics, molecule-semiconductor hybrid photoelectrodes, and more. Experiments reported here show that TiO2 thin films on silicon are electrochemically and photoelectrochemically reduced in buffered acetonitrile at potentials relevant to photoelectrocatalysis of CO2 reduction, N2 reduction, and H2 evolution. On both n-type Si and irradiated p-type Si, TiO2 reduction is proton-coupled with a 1e-:1H+ stoichiometry, as demonstrated by the Nernstian dependence of the Ti4+/3+ E1/2 on the buffer pKa. Experiments were conducted with and without illumination, and a photovoltage of ∼0.6 V was observed across 20 orders of magnitude in proton activity. The 4 nm films are almost stoichiometrically reduced under mild conditions. The reduced films catalytically transfer protons and electrons to hydrogen atom acceptors, based on cyclic voltammogram, bulk electrolysis, and other mechanistic evidence. TiO2/Si thus has the potential to photoelectrochemically generate high-energy H atom carriers. Characterization of the TiO2 films after reduction reveals restructuring with the formation of islands, rendering TiO2 films as a potentially poor choice as protecting films or catalyst supports under reducing and protic conditions. Overall, this work demonstrates that atomic layer deposition TiO2 films on silicon photoelectrodes undergo both chemical and morphological changes upon application of potentials only modestly negative of RHE in these media. While the results should serve as a cautionary tale for researchers aiming to immobilize molecular monolayers on "protective" metal oxides, the robust proton-coupled electron transfer reactivity of the films introduces opportunities for the photoelectrochemical generation of reactive charge-carrying mediators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.