Abstract
Photoferroelectrics that involve strong light-matter coupling are regarded as promising candidates for realizing bulk photovoltaic and photoelectric effects via light absorption. Nonetheless, understanding the photoresponse mechanism or modulation of performance from a microscopic point of view is scarcely explored through quantification of macroscopic properties. Herein, we design a model material, Gd3+-doped (K0.5Na0.5)NbO3 ferroelectric-transparent ceramics, and present an advantageous strategy to enhance the optoelectronic coupling through joint modulations of lattice distortion and oxygen vacancies, along with inner defects and ferroelectric domains. Significantly, their microcosmic manipulation can be intuitively and facilely evaluated by the optical transparency of each ceramic. An approximately 104 fold increase in conductivity under ultraviolet irradiation was produced. Under the cocoupling between external physical fields, the synergy of photoelectric stimulation increased the photoconductivity of the ceramics by 13.89 times. Additionally, a significant increase (4.5-fold) in the current output from the photovoltaic effect was achieved via ferroelectric domains of moderate size, whose size could be easily assessed by optical transmittance. In situ microscopic observations confirmed that the configuration of oxygen vacancy-dependent ferroelectric domains contributes to the enhanced optoelectronic response. This research provides a distinct way to develop inexpensive optocoupler devices and meet the requirements for multifunctional integration in single photoferroelectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.