Abstract

The ferroelectric-photovoltaic (FE-PV) device, in which a homogeneous ferroelectric material is used as a light absorbing layer, has been investigated during the past several decades with numerous ferroelectric oxides. The FE-PV effect is distinctly different from the typical photovoltaic (PV) effect in semiconductor p–n junctions in that the polarization electric field is the driving force for the photocurrent in FE-PV devices. In addition, the anomalous photovoltaic effect, in which the voltage output along the polarization direction can be significantly larger than the bandgap of the ferroelectric materials, has been frequently observed in FE-PV devices. However, a big challenge faced by the FE-PV devices is the very low photocurrent output. The research interest in FE-PV devices has been re-spurred by the recent discovery of above-bandgap photovoltage in materials with ferroelectric domain walls, electric switchable diodes and photovoltaic effects, tip-enhanced photovoltaic effects at the nanoscale, and new low-bandgap ferroelectric materials and device design. In this feature article, we reviewed the advance in understanding the mechanisms of the ferroelectric photovoltaic effects and recent progress in improving the photovoltaic device performance, including the emerging approaches of integrating the ferroelectric materials into organic heterojunction photovoltaic devices for very high efficiency PV devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.