Abstract
When using single atoms (SAs) as a co-catalyst in photocatalytic H2 generation, achieving a well-dispersed, evenly distributed and adjustable SA surface density on a semiconductor surface is a challenging task. In the present work we use the planar adsorption of tetrakis-(4-carboxyphenyl)-porphyrin (TCPP) and its platinum coordinated analogue, Pt-TCPP, onto anatase TiO2 surfaces to establish a spatially controlled decoration of SAs. We show that the surface Pt SA density can be very well controlled by co-adsorption of Pt-TCPP and TCPP in the planar monolayer regime, and by adjusting the Pt-TCPP to TCPP ratio a desired well dispersed surface density of SAs up to 2.6×105 atoms μm-2 can be established (which is the most effective Pt SA loading for photocatalysis). This distribution and the SA state are maintained after a thermal treatment in air, and an optimized SA density as well as a most active form of Pt for photocatalytic H2 evolution can be established and maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.