Abstract

AbstractWhen using single atoms (SAs) as a co‐catalyst in photocatalytic H2 generation, achieving a well‐dispersed, evenly distributed and adjustable SA surface density on a semiconductor surface is a challenging task. In the present work we use the planar adsorption of tetrakis‐(4‐carboxyphenyl)‐porphyrin (TCPP) and its platinum coordinated analogue, Pt‐TCPP, onto anatase TiO2 surfaces to establish a spatially controlled decoration of SAs. We show that the surface Pt SA density can be very well controlled by co‐adsorption of Pt‐TCPP and TCPP in the planar monolayer regime, and by adjusting the Pt‐TCPP to TCPP ratio a desired well dispersed surface density of SAs up to 2.6×105 atoms μm−2 can be established (which is the most effective Pt SA loading for photocatalysis). This distribution and the SA state are maintained after a thermal treatment in air, and an optimized SA density as well as a most active form of Pt for photocatalytic H2 evolution can be established and maintained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.