Abstract

In recent years, the use of single atoms (SAs) has become of a rapidly increasing significance in photocatalytic H2 generation; here SAnoble metals (mainly Pt SAs) can act as highly effective co-catalysts. The classic strategy to decorate oxide semiconductor surfaces with maximally dispersed SAs relies on "strong electrostatic adsorption" (SEA) of suitable noble metal complexes. In the case of TiO2 - the classic benchmark photocatalyst - SEA calls for adsorption of cationic Pt complexes such as [(NH3 )4 Pt]2+ which then are thermally reacted to surface-bound SAs. While SEA is widely used in literature, in the present work it is shown by a direct comparison that reactive attachment based on the reductive anchoring of SAs, e.g., from hexachloroplatinic(IV) acid (H2 PtCl6 )leads directly to SAs in a configuration with a significantly higher specific activity than SAs deposited with SEA - and this at a significantly lower Pt loading and without any thermal post-deposition treatments. Overall, the work demonstrates that the reactive deposition strategy is superior to the classic SEA concept as it provides a direct electronically well-connected SA-anchoring and thus leads to highly active single-atom sites in photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call