Abstract

In recent years, plants have been used as reducing agents for the synthesis of nanoparticles in a short time, and it consists of low cost, and there is no harmful effect on the environment; In this study, silver nanoparticles are synthesized from AgNO3 using leaf extract of Solena amplexicaulis (Lam.) Gandhi. The leaf extract is mixed with AgNO3 solution, and color change occurs from whitish-yellow to dark brown at room temperature within a few minutes. After incubation, the suspension was centrifuged, and particles were separated and dried. The green synthesized AgNPs were characterized by UV-visible spectroscopy in a maximum wavelength of 393 nm, FTIR, SEM, EDAX, DLS, XRD, and ZETA POTENTIAL; Photocatalytic degradation of Victoria blue or basic blue dye was investigated by green synthesized Ag nanoparticles with solar irradiation technique by biometrically at different time intervals. The UV-visible characteristic peak absorption of Victoria blue solution was 250 nm. The photocatalytic activity at different time intervals [control, treated controls, 30 min, (1, 2, 3, 5, 8, 12, 24, 48, 60, 72) hrs] was collected and decreased the peak intensity and was measured using UV-visible spectroscopy and Fourier Transform Infrared Spectroscopy. Green synthesized Ag nanoparticles effectively degraded the Victoria blue dye solution in total exposure time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call