Abstract

We report on a cost-effective and time-efficient approach to synthesize flexible membranes of polyvinylidene fluoride (PVDF) doped with varying concentrations of Fe3O4 nanoparticles (FNP). The membranes exhibit a uniform dispersion of FNPs, a β-phase structure, and porous morphology, as confirmed by x-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements. Fourier Transform-Infra Red (FTIR) and x-ray Photon spectroscopy (XPS) analysis was also performed for the identification of structural and chemical parameters of PVDF:FNP membranes. Photocatalytic degradation of malachite green (MG) dye under ultraviolet (UV) irradiation was assessed using the PVDF:FNP membranes. The results demonstrate a significant enhancement in the degradation efficiency and rate constant of the photocatalytic process with the utilization of PVDF:FNP membranes compared to FNP alone. Among the various concentrations tested, the PVDF membrane with 7% FNP doping exhibited the highest degradation efficiency of 98.39% and a notable apparent rate constant of 0.07048 min−1 in 60 min. The improved photocatalytic performance can be attributed to the larger surface area and enhanced accessibility of active sites in PVDF:FNP membranes, facilitating better control of the reaction environment and reducing the recombination rate of electron–hole pairs. This study suggests that PVDF:FNP membranes hold great promise for water purification applications, offering flexible membranes with superior degradation efficiency and enhanced reusability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.