Abstract
Phytophthora capsici is an oomycete pathogen with a broad host range that inflicts significant damage in vegetables. Phosphite (Phi) is used to control oomycete diseases, but the molecular mechanisms underlying Phi-induced resistance to P. capsici are unknown. Thus, Phi-inhibited mycelial growth on strain LT1534 and primed host defence were analysed. We demonstrated that Phi (>5µgmL-1) had a direct antibiotic effect on mycelial growth and zoospore production, and that mortality and DNA content were significantly reduced by pre-treatment with Phi. In addition, elevated hydrogen peroxide (H2O2) promoted callose deposition and increased the levels of soluble proteins and Capsicum annuum L. pathogenesis-related 1 (CaPR1) expression. Furthermore, Phi (1gL-1) significantly increased the transcription of the antioxidant enzyme genes, and the genes involved in ethylene (ET) and abscisic acid (ABA) biosynthesis, as well as mitogen-activated protein kinase (MAPK) cascades. However, pre-treatment with reactive oxygen species (ROS), ABA and ET biosynthesis inhibitors decreased Phi-induced resistance and reduced the expression of ABA-responsive 1 (CaABR1) and lipoxygenase 1 (CaLOX1). In addition, the decreased ROS and ABA inhibited Phi-induced expression of CaMPK17-1. We propose that Phi-induced ROS production, ET and ABA biosynthesis mediate the control of P. capsici, and that ABA functions through CaMPK17-1-mediated MAPK signalling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.