Abstract

We investigate the pre-inflationary dynamics of inflation with the Starobinsky potential, favored by recent data from the Planck mission, using techniques developed to study cosmological perturbations on quantum spacetimes in the framework of loop quantum cosmology. We find that for a large part of the initial data, inflation compatible with observations occurs. There exists a subset of this initial data that leads to quantum gravity signatures that are potentially observable. Interestingly, despite the different inflationary dynamics, these quantum gravity corrections to the powerspectra are similar to those obtained for inflation with a quadratic potential, including suppression of power at large scales. Furthermore, for super horizon modes the tensor modes show deviations from the standard inflationary paradigm that are unique to the Starobinsky potential and could be important for non-Gaussian modulation and tensor fossils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call