Abstract

In this thesis we present two geometric theories designed to extend general relativity. It can be seen as one of the aims of such theories to model the observed accelerating expansion of the universe as a gravitational phenomenon, or to provide a mathematical structure for the formulation of quantum field theories on curved spacetimes and quantum gravity. This thesis splits into two parts: In the first part we consider multimetric gravity theories containing N > 1 standard model copies which interact only gravitationally and repel each other in the Newtonian limit. The dynamics of each of the standard model copies is governed by its own metric tensor. We show that the antisymmetric case, in which the mutual repulsion between the different matter sectors is of equal strength compared to the attractive gravitational force within each sector, is prohibited by a no-go theorem for N = 2. We further show that this theorem does not hold for N > 2 by explicitly constructing an antisymmetric multimetric repulsive gravity theory. We then examine several properties of this theory. Most notably, we derive a simple cosmological model and show that the accelerating expansion of the late universe can indeed be explained by the mutual repulsion between the different matter sectors. We further present a simple model for structure formation and show that our model leads to the formation of filament-like structures and voids. Finally, we show that multimetric repulsive gravity is compatible with high-precision solar system data using the parametrized post-Newtonian formalism. In the second part of the thesis we propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the differentiable manifold structure of classical spacetime. In this picture we demonstrate that classical spacetime emerges as a finite-dimensional manifold through the topological identification of all quantum points with identical position expectation value. We speculate on the possible relevance of this geometry to quantum field theory and gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.